车载三波束多普勒激光雷达波束配置研究

范 哲 张春熹 欧 攀* 韩凤山

(北京航空航天大学仪器科学与光电工程学院,北京 100191)

摘要 多普勒激光雷达因测速精度高、无测速误差积累等特点而成为现代组合导航中的重要设备。为了提高车载 三波束多普勒激光雷达的系统探测性能,采用 Oren-Nayar 模型仿真分析了波束照射角度与回波功率之间的变化 关系,并研究了系统信噪比和测速灵敏度随波束照射角度的变化关系,综合考虑了波束照射角度对三者的影响,给 出水平偏转角和天顶角余角的选择范围。通过实验对比天顶角余角为 53°和 24°时的测试结果,验证了分析得到的 角度选取范围的合理性。

关键词 激光光学;车载激光雷达;导航;三波束;波束照射角度 中图分类号 TN958.98 **文献标识码** A **doi**: 10.3788/CJL201441.0214001

Research on Beam Pointing Angle for Three-Beam Doppler Vehicle Lidar

Fan Zhe Zhang Chunxi Ou Pan Han Fengshan

(School of Instrumentation Science and Optoelectronics Engineering, Beihang University, Beijing 100191, China)

Abstract Due to the high measurement accuracy and no speed accumulated error, Doppler lidar becomes an important equipment of modern navigation system. In order to improve the performance of three-beam Doppler vehicle lidar, Oren-Nayar model is used to analyze the relationship between the beam pointing angle and the echo power. The dependences of the signal-to-noise ratio and speed sensitivity on beam pointing angle are studied too. The ranges of horizontal deflection angle and the complement of zenith angle are provided. The comparative experiments are conducted with the complement of zenith angle equal to 53° and 24°, separately. Experimental results show that the chosen angles are appropriate.

Key words laser optics; vehicle lidar; navigation; three-beam; beam pointing angle **OCIS codes** 140.3460; 240.6700; 280.3340; 290.1483

1 引 言

目前,导航系统已经成为舰船、飞机、导弹、汽车 等航行体上的重要设备。随着现代工程技术的飞速 发展,传统导航系统中已有的测速方式存在的误差 积累、动态响应能力差等缺点突显出来,无法满足对 物体运动速度的准确测量的要求^[1-3]。激光多普勒 雷达因其测速精度高、空间分辨率好、动态响应快等 特点,成为测速技术领域的重要发展方向。将三波 束多普勒激光雷达应用于车载导航系统当中,能连 续测量出车辆相对于地面的三维轴向速度及瞬时位 置等导航参数,实现自主式导航,且在航行前不需要 调整,使用简单方便^[4-7]。

随着工程应用对多波束雷达的探测性能如信噪 比(SNR)和测速灵敏度要求的不断提高,需要对波束 配置进行更深入的研究。国内外学者对多波束雷达 波束安装方式进行了广泛的研究。Kees 等^[8]实现了 四波束 Janus 配置的毫米波测速系统对车辆的纵向 和侧向速度的测量,给出了有关天线波束特性的优化

基金项目:国家自然科学基金(61101007)、教育部新世纪优秀人才支持计划

E-mail: zchunxi@hotmail.com

* 通信联系人。E-mail: oupan@buaa.edu.cn

收稿日期: 2013-06-14; 收到修改稿日期: 2013-09-01

作者简介:范 哲(1985-),男,博士研究生,主要从事激光雷达技术方面的研究。E-mail: rison424@163.com

导师简介:张春熹(1965—),男,教授,博士生导师,主要从事惯性技术、光学传感与导航等方面的研究。

模型,其采用的是可动天线模式,波源使用的是毫米 波;杨洋等^[9]从多普勒频移量、人射光覆盖的弧长等 量的关系的角度分析了多普勒测风激光雷达的激光 入射和接收角度设计。但车载激光雷达的波束照射 方式和测风激光雷达的照射方式有本质上的不同,目 前还没有专门针对车载激光雷达波束配置的研究。 文献[10]对四波束微波多普勒导航雷达工作原理进 行了分析,设计的天顶角角度为 23°,水平偏转角为 12°;文献[11]对车载单波束多普勒激光雷达进行论 述,系统中天顶角角度为 68°,水平偏转角为 0°;文献 [12]中把机载激光雷达波束锥角设计为 45°,是将载 体水平运动速度精度同飞行高度做了折衷。然而以 上文献均未对角度配置的影响进行量化考量。

本文对三波束多普勒激光雷达波束照射角度进 行了研究,原理上论述了三波束多普勒激光雷达的 工作原理,并从3个方面进行分析,包括波束照射角 度与回光功率之间的关系,波束照射角度与系统信 噪比之间的关系,波束照射角度对测速灵敏度的影 响。最后搭建了实验系统,分析该系统激光波束照 射角度的选取,并进行了对比实验。

2 工作原理

车载三波束多普勒激光雷达波束照射方式如图 1 所示,采用的是收发合置天线。以车身为载体建 立 O-XYZ 坐标系,O 点为三个光束反向的交点,X 轴为车头前进方向,Y 轴为车身侧向,Z 轴为垂直向 下的方向,激光波束非共线地照向地面。

图 1 车载三波束多普勒激光雷达波束照射方式示意图 Fig. 1 Beam pointing scheme of the three-beam Doppler vehicle lidar

当汽车运行起来之后,由于激光雷达同地面之 间存在相对运动,所以返回的激光在三个波束上分 别附加多普勒频移 f1、f2和f3,通过检测该频移量 即可以计算出激光束照射方向的径向速度,结合三 波束在 OXYZ 坐标系的张角,可以分别推算出车辆 $X,Y,Z = 个方向的速度 v_x, v_y, v_z$,为车载导航系统 提供有用的速度信息。通常波束的配置并非任意的, 而是具有一定的对称性,以便于简化运算。设水平偏 转角 $\theta_2 = -\theta_1 = \pi - \theta_3 = \theta$,天顶角余角 $\alpha_1 = \alpha_2 = \alpha_3 = \alpha$,激光在真空中的波长为 λ ,则三波束多普勒 激光雷达每个波束测得的多普勒频率为

$$f_{1} = \frac{2}{\lambda} (v_{x} \cos \alpha \cos \theta - v_{y} \cos \alpha \sin \theta + v_{z} \sin \alpha),$$
(1)
$$f_{2} = \frac{2}{\lambda} (v_{z} \cos \alpha \cos \theta + v_{y} \cos \alpha \sin \theta + v_{z} \sin \alpha),$$

$$C_{2} = \frac{2}{\lambda} (v_{x} \cos \alpha \cos \theta + v_{y} \cos \alpha \sin \theta + v_{z} \sin \alpha),$$
(2)

$$f_{3} = \frac{2}{\lambda} (-v_{x} \cos \alpha \cos \theta + v_{y} \cos \alpha \sin \theta + v_{z} \sin \alpha).$$
(3)

根据

$$v_x = \frac{\lambda(f_2 - f_3)}{4\cos\alpha\cos\theta},\tag{4}$$

$$v_{y} = \frac{\lambda(f_{2} - f_{1})}{4\cos \alpha \sin \theta},$$
(5)

$$v_z = \frac{\lambda(f_1 + f_3)}{4\sin\alpha},\tag{6}$$

即可推算出三个坐标轴方向的速度。

3 波束照射角度选择

3.1 波束照射角度与散射回波信号功率的关系

无论采用直接探测或相干探测,都希望得到大的回波信号强度。但在实际测量过程中,因为粗糙表面的光散射作用,回波信号强度被极大衰减。粗糙表面的双向反射分布函数(BRDF)不仅能描述表面的光辐射特性,而且也能描述方向散射特性^[13-14]。1996年提出的 Oren-Nayar 模型^[15]是在Lamber 模型的基础上应用 Torrance-Sparrow 模型把表面分为多个 V 型槽具有相同斜率的小面元。假设粗糙表面倾斜角度服从均值为 $\mu=0$,标准差为 σ 的高斯分布,垂直于照射表面的平面内的入射角和反射角分别为 θ_i 和 θ_r 。令 $\xi=\max[\theta_r,\theta_i],\zeta=\min[\theta_r,\theta_i],利用粗糙表面倾斜角度分布中的标准差<math>\sigma$ 表示表面的粗糙程度,则反射辐射照度公式为

$$L_{r}(\theta_{r},\theta_{i},\phi_{r}-\phi_{i};\sigma) = (\rho/\pi)E_{0}\cos\theta_{i}\{C_{1}(\sigma)+\cos(\phi_{r}-\phi_{i})C_{2}(\xi;\zeta;\phi_{r}-\phi_{i};\sigma)\tan\zeta + [1-|\cos(\phi_{r}-\phi_{i})|]C_{3}(\xi;\zeta;\sigma)\tan[(\xi+\zeta)/2]\} + 0.17(\rho^{2}/\pi)E_{0}\cos\theta_{i}[\sigma^{2}/(\sigma^{2}+0.13)][1-\cos(\phi_{r}-\phi_{i}](2\zeta/\pi)^{2}],$$
(7)

其中 C1、C2 和 C3 分别为

$$C_1 = 1 - 0.5 \frac{\sigma^2}{\sigma^2 + 0.33},$$
(8)

$$C_{2} = \begin{cases} 0.45 \frac{\sigma}{\sigma^{2} + 0.09} \sin \xi & \cos(\phi_{\rm r} - \phi_{\rm i}) \ge 0\\ 0.45 \frac{\sigma^{2}}{\sigma^{2} + 0.09} \left[\sin \xi - \left(\frac{2\beta}{\pi}\right)^{3}\right] & \cos(\phi_{\rm r} - \phi_{\rm i}) < 0 \end{cases},$$
(9)

$$C_{3} = 0.125 \left(\frac{\sigma^{2}}{\sigma^{2} + 0.09}\right) \left(\frac{4\xi\zeta}{\pi^{2}}\right)^{2},$$
(10)

 ρ 为表面反射率, E_0 为垂直照射时的辐射亮度, ϕ_i 和 ϕ_r 分别表示水平平面内的入射角和反射角。由于采用收发合置光学天线, $f_i = \theta_r, \phi_i = \phi_r$,则系统的归一化回波功率可以表示为

$$P_{r}(\theta_{i},\sigma) = \frac{\rho}{\pi} \cos^{2}\theta_{i} \Big\{ C_{1}(\sigma) + C_{2}(\xi;\zeta;\sigma) \tan \zeta + 0.17\rho \frac{\sigma^{2}}{\sigma^{2} + 0.13} \Big[1 - \Big(\frac{2\zeta}{\pi}\Big)^{2} \Big] \Big\}.$$
(11)

对在不同粗糙度条件下,归一化回波功率随入 射角度(天顶角余角 α)的变化情况进行仿真,设表 面反射率 $\rho=10\%$, σ 分别为 0° 、 25° 、 50° 、 75° 。

由图 2 可知,随着激光波束照射角度的增大,回 波功率逐渐减小。 σ 对归一化回波功率的影响分两 种情况:1)当 σ 很小时,归一化回波功率随着入射 角在 0°~90°范围内的增加而迅速减小;2)当 σ 增 大时,归一化回波功率在入射角小于 40°时变化较 小,而大于 40°之后变化较快。在车载激光雷达实 际应用中,照射目标随着车辆运行不停变化,无论是 公路路面还是沙地等路况,其归一化回波功率均满 足第二种变化情况。因为系统信噪比同回波功率成 正比,为使系统保持较高信噪比,天顶角(入射角)余 角 α_1, α_2 和 α_3 选择应尽可能大,且尽可能大于 50°。

图 2 归一化回波功率随入射角度变化 Fig. 2 Relationship between normalized echo power and beam pointing angle with different roughnesses

3.2 波束照射角度与系统信噪比的关系

三波束多普勒激光雷达利用连续波激光进行光 混频(零差探测)测量。激光雷达发射的信号光在大 气中传输后的回波信号与系统本振光信号通过光混 频器产生差频频率信号,本振光频率等于发射激光 频率时,差频频率大小即为回波信号的多普勒频移 量。采用零差探测方式进行多普勒频率测量,量子 噪声限下系统信噪比可以表示为

$$R_{\rm SN} = \eta_{\rm hom} \eta_{\rm det} \eta_{\rm coh} P_{\rm las} \frac{\rho}{\pi} \frac{A_{\rm rec}}{R^2} T_{\rm atm}^2 T_{\rm tra} T_{\rm rec} / (h_{\nu}B), \qquad (12)$$

式中 η_{hom} 为拍频效率, η_{det} 为探测器量子效率, η_{coh} 为 相干损失, P_{las} 为激光器发射光功率, ρ 为目标反射 率, A_{rec} 为照射光斑面积,R为作用距离, T_{atm} 为大气 透射率, T_{tra} 为准直器发射效率, T_{rec} 为准直器的接 收效率,h为普朗克常数, ν 为激光频率,B为探测器 带宽。

与 3.1 节研究侧重点不同(因为三波束激光倾 斜照射地面时,波束照射角度不同使得波束的作用 距离不同,从而会影响到系统的信噪比),本节将研 究因倾斜角度改变导致的作用距离改变对于系统信 噪比的影响。设三波束天线安装高度为 *H*,则波束 作用距离为 *R* = *H*/sin α。图 3 所示为系统信噪比 与天顶角余角的关系。

图 3 系统信噪比与天顶角余角的关系 Fig. 3 Relationship between SNR of the system and the complement of zenith angle

由图 3 可知,系统信噪比随着天顶角余角的增加单调增大。在文献[16]中论述了当相干激光雷达 信噪比高于 8 dB 时,最大似然估计值基本达到克拉 美劳下限(CRLB)。假设信噪比 8 dB 时对应的天顶 角余角为 α_s ,则应使 $\alpha > \alpha_s$ 。

3.3 波束照射角度与探测灵敏度的关系

利用三波束激光雷达可以测量汽车在三个坐标 轴方向(图1)的速度,这里只研究 X 方向和 Y 方向 的速度。测速灵敏度为 X 方向或 Y 方向的单位速度 变化引起的波束方向的多普勒频移量,以波束 2 为 例,其他两个波束的情形与波束 2 的完全相同。汽车 在 X 方向和 Y 方向上引起的波束方向的多普勒频移 量为

$$f_{\rm 2d} = \frac{4}{\lambda} \left(\nu_x \cos \alpha_2 \cos \theta_2 + \nu_y \cos \alpha_2 \sin \theta_2 \right).$$
(13)

则 X 方向与 Y 方向上测速灵敏度分别为

$$S_{2x} = \frac{\partial f_{2d}}{\partial \nu_x} = \frac{4\cos\alpha_2\cos\theta_2}{\lambda}, \qquad (14)$$

$$S_{2y} = \frac{\partial f_{2d}}{\partial y_y} = \frac{4\cos\alpha_2 \sin\theta_2}{\lambda}.$$
 (15)

在水平偏转角 $\theta_2 = 45^{\circ}$ 时,波束2的测速灵敏度 之和 $S_{2x} + S_{2y}$ 达到最大,具有最大的测速灵敏度。且 此时 $S_{2x} = S_{2y}$,即在X方向和Y方向具有相同的测 速灵敏度。由(14)式和(15)式可知测速灵敏度同天 顶角余角 α_2 成余弦关系,如图4所示。

由图 4 可知,当系统硬件参数和算法选定之后, 测速灵敏度只与天顶角余角有关,且随着天顶角余 角的增大逐渐减小。测速灵敏度不可以太小,否则 仪器将失灵不能响应运行速度,通常需要实际应用 给出测速灵敏度或可与其进行换算的指标要求。假 设指标要求系统的测速灵敏度高于 ξ ,此时对应的 天顶角余角为 α_1 ,则应使 $\alpha < \alpha_1$ 。

图 4 测速灵敏度与天顶角余角的关系 Fig. 4 Relationship between speed sensitivity and the complement of zenith angle

4 实验结果及分析

4.1 测试系统及波束照射角度分析

为了验证以上的分析,搭建了单波束零差探测 多普勒激光雷达,在实验室环境下对其进行测试。 测试目标利用转台模拟匀速运动目标,将激光倾斜 照向运动转台侧面^[17],返回信号光同本振光进行拍 频,利用光电探测器将光信号转变为电压信号,再通 过 PXI5124 采集卡对输出的电压信号进行采集,对 数据进行傅里叶变换及频率提取即可求得多普勒频 移量。其原理框图如图 5 所示。

图 5 测试原理图

Fig. 5 Schematic diagram of the experimental setup

图 5 中左侧方框中为实验所用激光雷达系统, 右侧方框中为运动转台,提供匀速的切向速度,模拟 匀速运行目标。图 5 中坐标系 OXYZ 同前文所述 坐标系,转台的切向速度v与X 轴平行,设激光照射 在转台侧面点 P,调整准直器照射方向,使照射在 P 点时具有一定的水平偏转角和天顶角余角。这两个 角度根据测试系统给定参数及指标,按照第 3 节所 述方法进行选择,测试系统主要参数及指标如表1 所示。

可以求解出 $\alpha_s = 43.5^\circ, \alpha_l = 57^\circ$ 。按照第3节所 述,则有三种情况:1) $\alpha > 50^\circ; 2$) $\alpha > 43.5^\circ; 3$) $\alpha < 57^\circ$ 。 回波功率、系统信噪比与测速灵敏度的变化趋势并非 一致,如果要保证高的回波功率和信噪比,则需要牺 牲一定测速灵敏度,同样为提高测速灵敏度,则要以 牺牲回波功率及信噪比为代价。本实验系统经过折 衷考虑选择天顶角余角范围为 50°<α<57°。 为使汽车在 X 方向和 Y 方向上均具有较大测 速灵敏度,水平偏转角选为 $\theta=45^{\circ}$ 。

表1 测试系统主要参数及指标

Table 1 Key parameters and index of the system

Parameter	Value	Parameter	Value
Wavelength λ /nm	1550	Homodyne efficiency $\eta_{ ext{hom}}$	0.5
Coherence loss $\eta_{ m coh}$	0.3	Quantum efficiency $\eta_{ ext{det}}$	0.9
Laser output power $P_{\rm las}/{ m mW}$	10	Spot diameter D / mm	2.5
Transmission of atmosphere $T_{\rm atm}$	0.95	Transmission of transmitter $T_{ m tra}$	0.3
Transmission of receiver $T_{\rm rec}$	0.3	Target reflectivity ρ	0.1
Height of the antenna H /m	1	Sampling rate f_s/kHz	512
Fast Fourier transform point	1024	Running speed ν /(cm • s ⁻¹)	4
Velocity sensitivity $\xi / [kHz/(cm \cdot s^{-1})]$	10		

4.2 实验结果

利用 4.1 节所示测试系统进行实验验证,对天顶角余角分别为 53°和 24°时的测试结果进行对比,测试结果如图 6 所示。

对比图 6(a)和(b)可知,当天顶角余角为 53°时, 信号频谱峰值位于 21 kHz 处,信噪比达到了9.8 dB。 因为实验中使用的为单波束激光雷达,由(4)式可知 此时速度分辨率已经减半,若使用三波束激光雷达,

计算速度分辨率应为10.5 kHz/(cm・s⁻¹),满足指标 要求,且信噪比大于8 dB;当天顶角余角为24°时,信 号频谱峰值位于32 kHz处,信噪比降到7.8 dB,其速 度分辨率为16 kHz/(cm・s⁻¹),能够满足指标要求, 但信噪比小于8 dB。考虑到测试是在较为理想的实 验室情况下进行,若进行外场实验,信噪比还会降低, 所以选择天顶角余角为53°更加合适。

图 6 测试结果:瞬时波形和频谱。(a) 天顶角余角为 53°;(b) 天顶角余角为 24° Fig. 6 Results of the experiments: temporal waveforms and frequency spectra. (a) The complement of zenith angle is 53°; (b) the complement of zenith angle is 24°

5 结 论

对车载三波束激光雷达系统的波束配置进行了 研究,分别分析了激光波束天顶角同回波功率、系统 信噪比和测速灵敏度之间的关系,综合考虑了三个 影响因素,给出水平偏转角及天顶角余角选择范围, 并通过对比实验验证了分析得到的角度选取范围的 合理性。

参考 文献

1 J Parviainen, M A Vazquez Lopez, O. Pekkalin, et al.. Using Doppler radar and MEMS gyro and augment DGPS for land vehicle navigation[C]. St. Petersburg: 18th IEEE International Conference on Control Applications, 2009. 1690-1695.

- 2 W H Guier, G C Weiffenbach. A satellite Doppler navigation system[J]. Proceedings of the IRE, 1960, 48(4): 507-516.
- Shen Fahua, Sun Dongsong, Wang Zhongchun, *et al.*. Beam scanning and wind inversion technique of a mobile Doppler lidar
 [J]. Acta Optica Sinica, 2012, 32(3): 0312004.
 沈法华,孙东松,王忠纯,等. 移动式多普勒激光雷达光束扫描 及风场反演技术研究[J]. 光学学报, 2012, 32(3): 0312004.
- 4 R M Banta, L D Olivier, E T Holloway, *et al.*. Smoke-column observations from two forest fires using Doppler lidar and Doppler radar[J]. J Applied Meteorology, 1992, 31(11): 1328-1349.
- 5 Wei Guo, Wang Yu, Long Xingwu, *et al.*. Vehicle self-contained navigation based on laser Doppler velocimeter [J]. High Power Laser and Particle Beams, 2011, 23(1): 49-53.
 魏 国,王 字,龙兴武,等. 基于激光多普勒测速仪的车载组

魏 国, 土 于, 龙兴武, 寺. 基丁激光多音刺测速仪的车载组 合导航[J]. 强激光与粒子束, 2011, 23(1): 49-53.

6 X Sui, S Zhou, N Chen, *et al.*. All fiber coherent Doppler lidar for space craft safe landing [C]. Changchun: International

Conference on Optoelectronics and Microelectronics, 2012. 198-202.

- 7 Yu Zhenzhen, Hou Xia, Zhou Cuiyun. Progress and current state of space-borne laser altimetry [J]. Laser & Optoelectronics Progress, 2013, 50(2): 020006.
 - 于真真,侯 霞,周翠芸.星载激光测高技术发展现状[J].激光 与光电子学进展,2013,50(2):020006.
- 8 N Kees, M Weinberger, J Detlefsen. Doppler measurement of lateral and longitudinal velocity for automobiles at millimeter waves[C]. Atlanta: Microwave Symposium Digest, IEEE MTT-S International, 1993, 2: 805-808.
- 9 Yang Yang, Shen Fahua, Dong Jingjing. The designment for incident and receiving angle of verifying attachment for Doppler wind lidar [J]. Chinese J Scientific Instrument, 2007, (12): 29-31.

杨 洋, 沈法华, 董晶晶. 多普勒测风激光雷达校准仪中激光入 射和接收角度设计[J]. 中国仪器仪表, 2007, (12): 29-31.

10 Zang Hefa, Pei Chengshan, Cheng Haichuan. Principle of Helicopter Doppler Navigation Radar [M]. Beijing: Beihang University Press, 2012. 27-28.

臧和发,裴承山,程海川.直升机多普勒导航雷达原理[M].北 京:北京航空航天大学出版社,2012.27-28.

- 11 J Zhou, X Long. Research on laser Doppler velocimeter for vehicle self-contained inertial navigation system [J]. Optics & Laser Technology, 2010, 42(3): 477-483.
- 12 D Pierrottet, F Amzajerdian, L Petway, et al.. Flight test

performance of a high precision navigation Doppler lidar [C]. SPIE, 2009, 7323: 732311.

- 13 Yang Ming, Han Lei, Wu Xiaodi, *et al.*. Visible light scattering of satellite based on bidirectional reflectance distribution function [J]. Laser & Optoelectronics Progress, 2010, 47(11): 112901.
 杨 明,韩 磊,吴晓迪,等. 基于 BRDF 条件下卫星可见光散 射特性分析[J]. 激光与光电子学进展, 2010, 47(11): 112901.
- 14 Yang Yufeng, Wu Zhensen, Cao Yunhua. Practical sixparameter bidirectional reflectance distribution function model for rough surface[J]. Acta Optica Sinica, 2012, 32(2): 0229001. 杨玉峰, 吴振森,曹运华. 一种实用型粗糙面六参数双向反射分 布函数模型[J]. 光学学报, 2012, 32(2): 0229001.
- 15 M Oren, S K Nayar. Generalization of the Lambertian model and implication for machine vision[J]. Int J Computer Vision, 1996, 14(3): 227-251.
- 16 Wang Jiqiang, Zhang Chunxi, Ma Zongfeng, et al.. Cramer-Rao lower bounds of parameter estimation from laser Doppler velocimetry[J]. Chinese J Lasers, 2008, 35(9): 1419-1422. 王继强,张春熹,马宗峰,等.激光多普勒测速参数估计的 Cramer-Rao下限[J].中国激光, 2008, 35(9): 1419-1422.
- 17 L Wang, D Feng, P Ou, et al.. The experimental study on Doppler echo signals with different scattering surfaces for velocity measurement[C]. SPIE, 2011, 8192: 8192N.

栏目编辑:张 腾